

August 2020

Our reference: 89699-Muntham-TurnersHill-030820-v2.0

Flood Risk Assessment and Surface Water Drainage Strategy for Planning

Prepared for: Hartmires Investment Ltd

Location:

Proposed Crematorium, Land north of Turners Hill Road, Turners Hill RH10 4PB

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, West Sussex, RH11 0PR +44 (0) 1293 214 444 enquiries@unda.co.uk

Document Issue Record

Location:	Proposed Crematorium, Land north of Turners Hill Road, Turners Hill, West Sussex RH10 4PB							
Application:	Outline planning application for a single 'chapel' crematorium with abated cremator and natural burial site with associated access, car parking, landscaping and drainage							
Prepared for:	Hartmires Investment Lt	Hartmires Investment Ltd						
Title:	Flood Risk Assessment a	Flood Risk Assessment and Surface Water Drainage Strategy for Planning						
Project No.:	89699	89699 Date: 3 rd August 2020 Issue No.: 2.0						
Written By:	T. Smith, BSc (Hons)	Checked By:	E. Bouet, BSc (Hons)	Authorised By:	E. Jeffery, MSci (Hons)			

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the commissioning party and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report. Any data and information provided by third parties and referred to herein has not been checked or verified by us unless otherwise expressly stated within this report. This report was checked and approved on the date it was issued and is therefore valid on this date. Understanding, circumstances, regulations and professional standards do change, which could subsequently affect the validity of this report. This report is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Commercial in Confidence

1. Introduction

- 1.1. This Flood Risk Assessment and Surface Water Drainage Strategy has been prepared by Unda Consulting Limited on behalf of Hartmires Investment Ltd, in support of a planning application for *Construction of a crematorium facility*. The development is proposed at Land to the north of Turners Hill Road, Turners Hill, West Sussex RH10 4PB. This report assesses flood risk and surface water drainage for the proposed development.
- 1.2. The proposed planning application is for *Outline planning application for a single 'chapel' crematorium with abated cremator and natural burial site with associated access, car parking, landscaping and drainage.* Post development the total roof area of the new crematorium building will cover approximately 888m².
- 1.3. In order to mitigate flood risk posed by post development runoff, adequate control measures will be required within the site. This will ensure that surface water runoff is dealt with at source and the flood risk off site is not increased.

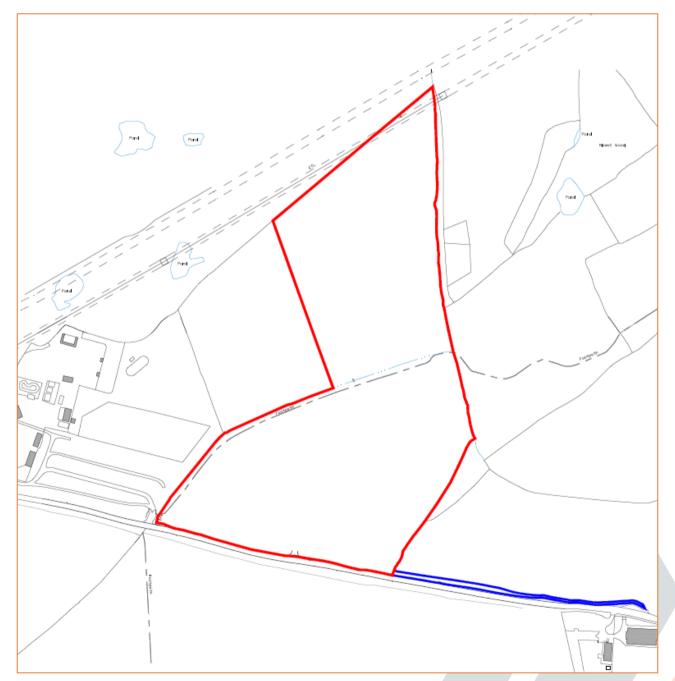


Figure 1: Site Location Plan (Source: Hartmires Investments Ltd)

Commercial in Confidence

2. Existing Site:

- 2.1. The site is currently occupied by two fields with a car park in the south, underlain by MOT type one gravel. According to plans provided by the client a public footpath transects the centre of the site along with two drainage ditches. Following a site reconnaissance, the application boundary was found to be largely underlain by grassland with the site sloping steeply towards the north east.
- 2.2. The site is approximately 68253m² in size and accessed from the south via gravel junction, off Turners Hill Road. Information provided by the client, and noted during the site walkover, indicates that the current site is underlain by MOT type one gravel and soft landscaping. As such the existing site is considered to be formed of entirely permeable coverage.
- 2.3. The surrounding area is predominantly characterised by agricultural land similar to that of the existing site. The south of the site is bound by Turners Hill Road with Butcher's Wood adjacent east. According to Google imagery the site is approximately 260m north west of St. Leonard's C of E Church and 600m west of Turners Hill crossroads.

Figure 2: Site Location (Source: Google)

Commercial in Confidence

Figure 3: View of the Site from Turners Hill Road (Source: Google)

Site Topography:

- 2.4. A topographical contour map has been provided by the client for inclusion within the report. This shows that levels within the southern field, proposed to be developed, range between 150.00mAOD, relating to land along the north eastern boundary, and 169.00mAOD in the south east, associated with land adjacent to Turner Hill Road.
- 2.5. A site reconnaissance confirmed that the site slopes steeply from south eastern corner towards north eastern periphery.
- 2.6. The area of land proposed to be developed in the centre of the site is recorded as having an approximate elevation of 164.00mAOD (refer to report appendix).

Commercial in Confidence

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, RH11 0PR. +44 (0) 1293 214 444. info@unda.co.uk

UND/

Existing Ground Conditions:

- 2.7. The 1:50,000 BGS map shows the site to be located directly upon the bedrock geology of Ardingly Sandstone Formation Sandstone. This strata was formed during the Valanginian Age.
- 2.8. According to BGS mapping the site is not underlain by superficial geological deposits.
- 2.9. The soil type taken from the UK soils website shows deep intermediate Sandstone with a Sand to Sandy Loam texture.
- 2.10. There are no nearby BGS borehole logs.
- 2.11. Published Environment Agency Groundwater Vulnerability mapping shows that the site is not located within an area classified as a Groundwater Source Protection Zone.

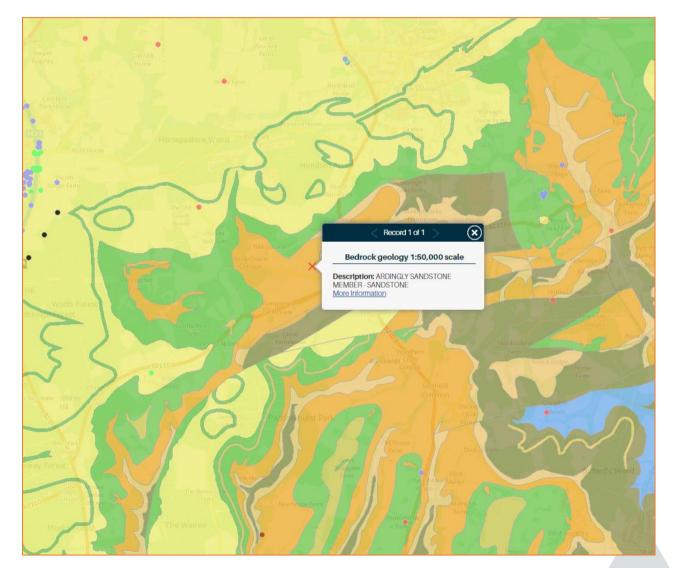


Figure 4: BGS Bedrock Geology (Source: BGS)

Commercial in Confidence

UND/

6

Figure 5: Soil Map (Source: UK Soils, BGS)

Commercial in Confidence

Nearby Watercourses / Drainage Features:

- 2.12. The client has confirmed that two drainage ditches are located within the red outline application boundary.
- 2.13. Both ditches reportedly flow from west to east transecting the centre north and north of the site. Given that both ditches are located within the red outline boundary they are considered within the client's ownership. Therefore it is possible to discharge to these features without third party permissions.
- 2.14. Following a site reconnaissance, it is considered most appropriate to discharge any post development runoff to the western section of the drainage ditch which transects the centre north of the site. Channel dimensions have not been measured however, given the topography of the site gravity connection is considered feasible.

Figure 6: Photos of the Downstream Section of the Centre North Drainage Ditch (Source: Unda Consulting Ltd)

Existing Drainage:

- 2.15. Given the current use of the site, and the information provided by the client, it can confidently be assumed that there are no formal surface water connections to Thames Water assets from within the red application boundary.
- 2.16. Surface water generated within the existing site boundary is considered likely to currently discharge at an uncontrolled rate to ground, and via overland/subsurface flow into the two aforementioned drainage ditches.

Commercial in Confidence

3. Development Proposals:

Proposed Development:

- 3.1. The proposed planning application is for *Outline planning application for a single 'chapel' crematorium with abated cremator and natural burial site with associated access, car parking, landscaping and drainage.*
- 3.2. Post development the total area of newly introduced impermeable surfacing will amount to approximately 6279m². This comprises the crematorium roof area (888m²), 112 space car park and access road (4481m²) and, paved areas (910m²).
- 3.3. In light of this, SuDS sizing within the strategy has been based on all newly introduced impermeable surfacing (6279m²) comprising post development built footprint, car park, access road and footpath.

Figure 7: Proposed Development Plan (Source: Indigo Landscape Architects Limited)

Vulnerability to flooding:

- 3.4. The NPPF classifies property usage by vulnerability to flooding.
- 3.5. The site is currently occupied by vacant land.
- 3.6. Post development the site will be utilised as a crematorium. Although crematoria are not specifically identified within Table 2: Flood risk vulnerability classification of the guidance to NPPF, it is considered that the development could be described as a nonresidential institution not included in "more vulnerable", or an assembly use, both of which are classed as "Less Vulnerable", and are considered appropriate in Flood Zone 1.

Commercial in Confidence

4. Flood Risk Assessment:

Flood Zones:

4.1. Within planning, Flood Zones refer to the probability of river and sea flooding, ignoring the presence of defences. They are shown on the Environment Agency's Flood Map for Planning (Rivers and Sea), available on the Environment Agency's website.

Flood Zone	Definition
Zone 1	Land having a less than 1 in 1,000 annual probability of river or sea flooding. (Shown as 'clear' on the
Low Probability	Flood Map – all land outside Zones 2 and 3)
Zone 2	Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or Land having
Medium	between a 1 in 200 and 1 in 1,000 annual probability of sea flooding. (Land shown in light blue on the
Probability	Flood Map)
Zone 3a	Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or
High Probability	greater annual probability of sea flooding. (Land shown in dark blue on the Flood Map)
Zone 3b	This zone comprises land where water has to flow or be stored in times of flood. Local planning
The Functional	authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and
Floodplain	its boundaries accordingly, in agreement with the Environment Agency. (Not separately distinguished
	from Zone 3a on the Flood Map)

Table 1: Environment Agency Flood Map for Planning (Rivers and Sea) (Source: EA)

4.2. The Flood Zones shown on the Environment Agency's Flood Map for Planning (Rivers and Sea) do not take account of the possible impacts of climate change and consequent changes in the future probability of flooding.

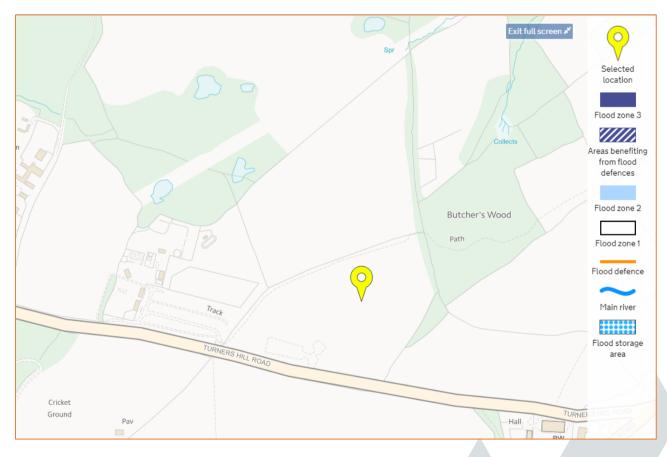


Figure 8: Environment Agency Flood Map for Planning (Rivers and Sea) (Source: EA)

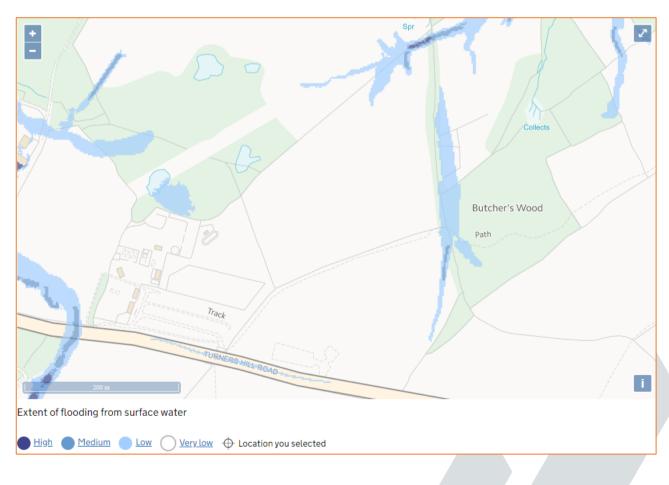
4.3. The site and surrounding area are located entirely within Flood Zone 1 (Low Probability), defined as land having less than a 1:1000 annual probability of fluvial or tidal flooding.

Commercial in Confidence

Fluvial:

4.4. In light of the above, the site is considered to be at very low risk of river flooding.

Tidal:


4.5. Due to the site topography and distance to the nearest coast/ tidal watercourse, the risk of tidal flooding is considered to be very low.

Commercial in Confidence

Pluvial:

- 4.6. Pluvial (surface water) flooding happens when rainwater does not drain away through the normal drainage systems or soak into the ground, but lies on or flows over the ground instead.
- 4.7. In 2013 the EA, working with Lead Local Flood Authorities (LLFAs), produced an updated Flood Map for Surface Water. It is considered to represent a significant improvement on the previous surface water flood maps available, both in terms of method and representation of the risk of flooding. The modelling techniques and data used are considerably improved, and also incorporated locally produced mapping where this is available to represent features best modelled at a local scale.
- 4.8. The Flood Map for Surface Water assesses flooding scenarios as a result of rainfall with the following chance of occurring in any given year (annual probability of flooding is shown in brackets):
 - 1:30 (3.3%)
 - 1:100 (1%)
 - 1:1000 (0.1%)
- 4.9. The mapping below shows the Risk of Flooding from Surface Water centred on the site. Please note that the EA do not consider this information suitable to be used to identify the risk to individual properties or sites. It is useful to raise awareness in areas which may be at risk and may require additional investigation.
- 4.10. The EA Risk of Flooding from Surface Water Map suggests that the majority of the site, including the proposed crematorium building, lies within an area of "Very Low" risk of flooding from surface water.
- 4.11. However, the Environment Agency have modelled two swathes of "Low" to "High" risk surface water pooling along the eastern and northern site boundary. Comparison of modelled extents with the topographic contour map indicates that the areas of risk correlate with the lowest lying land; approximately 10m lower than the proposed crematorium ground elevation.

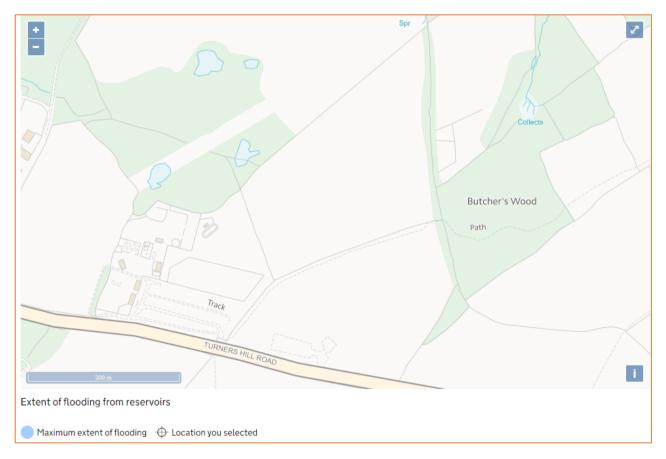
Figure 9: Extract from Environment Agency RoFSW map (Source: EA)

Commercial in Confidence

Groundwater:

- 4.12. Groundwater flooding occurs as a result of water rising up from the underlying rocks or from water flowing from abnormal springs. This tends to occur after much longer periods of sustained high rainfall. Higher rainfall means more water will infiltrate into the ground and cause the water table to rise above normal levels. Groundwater tends to flow from areas where the ground level is high, to areas where the ground level is low. In low-lying areas the water table is usually at shallower depths anyway, but during very wet periods, with all the additional groundwater flowing towards these areas, the water table can rise up to the surface causing groundwater flooding.
- 4.13. Groundwater flooding is most likely to occur in low-lying areas underlain by permeable rocks (aquifers). These may be extensive, regional aquifers, such as chalk or sandstone, or may be localised sands or river gravels in valley bottoms underlain by less permeable rocks. Groundwater flooding takes longer to dissipate because groundwater moves much more slowly than surface water and will take time to flow away underground.
- 4.14. No information has been provided which indicates that the site is at risk of groundwater flooding.

Sewer:


- 4.15. Sewer flooding occurs when the sewer network cannot cope with the volume of water that is entering it. It is often experienced during times of heavy rainfall when large amounts of surface water overwhelm the sewer network causing flooding. Temporary problems such as blockages, siltation, collapses and equipment or operational failures can also result in sewer flooding.
- 4.16. All Water Companies have a statutory obligation to maintain a register of properties/areas which have reported records of flooding from the public sewerage system, and this is shown on the DG5 Flood Register. This includes records of flooding from foul sewers, combined sewers and surface water sewers which are deemed to be public and therefore maintained by the Water Company. The DG5 register records of flood incidents resulting in both internal property flooding and external flooding incidents. Once a property is identified on the DG5 register, water companies can typically put funding in place to address the issues and hence enable the property to be removed from the register. It should be noted that flooding from land drainage, highway drainage, rivers/watercourses and private sewers is not recorded within the register.
- 4.17. Having reviewed Local Authority documentation there is no indication that the site has ever been subject to sewer surcharge flooding.

Commercial in Confidence

Other Sources:

- 4.18. The EA Risk of Flooding from Reservoirs Map suggests that the site does not lie within the "Maximum extent of flooding" from reservoir failure. Despite this, the EA advise on their website that reservoir flooding is extremely unlikely. All major reservoirs have to be inspected by specialist dam and reservoir Engineers. These inspections are monitored and enforced by the EA themselves. The risk to the site from reservoir flooding is therefore minimal and is far lower than that relating to the potential for fluvial flooding to occur.
- 4.19. No further information has been provided to suggest the site is susceptible to from the failure of reservoirs, canals or other artificial infrastructure from the risk of flooding.

Figure 10: Environment Agency Reservoir Flood Map (Source: EA)

Commercial in Confidence

5. Surface Water Drainage Strategy:

5.1. In order to mitigate flood risk posed by post development runoff, adequate control measures will need to be considered within the site. This will ensure that surface water runoff is dealt with at source and flood risk is not increased elsewhere.

Drainage Hierarchy:

- 5.2. The drainage strategy for the site has been prepared according to the drainage discharge hierarchy from *CIRIA C753 The Suds Manual*, as follows:
 - Infiltration to the maximum extent that is practical;
 - Discharge to surface waters;
 - Discharge to surface water sewer.

Infiltration Potential:

- 5.3. The 1:50,000 BGS map shows the site to be located directly upon the bedrock geology of Ardingly Sandstone Formation.
- 5.4. Despite being located directly upon Ardingly Sandstone Formation, the site is proposed to be utilised as a crematorium and burial ground.
- 5.5. Due to the existing permitted and proposed usage as a burial site infiltration to ground is not considered suitable.
- 5.6. In light of the above, an attenuation based strategy is proposed.

Proposed Discharge Rate:

- 5.7. Existing greenfield runoff rates for the southern field (3.939ha) have been calculated as 19.1 l/s for the 1:1 annual runoff event, 50.9 l/s for the 1:30 year event and 71.7 l/s for the 1:100 year event. Refer to enclosed calculations.
- 5.8. It is proposed that runoff from all SuDS features will be gradually discharged to the existing drainage ditch some 55m north of the proposed crematorium, via a new outfall connection (refer to proposed drainage layout in the report appendix).
- 5.9. Outflow from the proposed SuDS systems to the drainage ditch will be limited to greenfield runoff rate.
- 5.10. The greenfield runoff rates calculated for the southern field (refer to 5.6) are relatively high. Therefore, it is proposed to limit post development discharge to the greenfield runoff rate for all newly introduced impermeable areas (6279m²).
- 5.11. Existing greenfield runoff rates for the newly introduced impermeable areas (6279m²) have been calculated as 3.0 l/s for the 1:1 annual runoff event, 8.1 l/s for the 1:30 year event and 11.4 l/s for the 1:100 year event. Refer to enclosed calculations.
- 5.12. As such, discharge from the site will be limited to 3.0 l/s for all storms up to, and including, the 1:100 year + 40% climate change event via a hydrobrake. The hydrobrake will be installed in an inspection chamber within the site.

Areas of Focus:

- 5.13. The proposed SuDS features will be of sufficient size to ensure attenuation of all post development surface water runoff generated during the 1 in 100 year plus climate change event.
- 5.14. Key stakeholders would like to incorporate a pond within the proposed scheme to offer both amenity and biodiversity benefits. Given the preferred location of the pond, it is proposed that all post development roof runoff from the crematorium building will be directed and stored within a pond.
- 5.15. Post development surface water runoff generated from the car park, access road and paved areas will be managed via tanked permeable paving SuDS system located beneath the access road and car park.
- 5.16. The following section details the surface water attenuation volumes required to ensure that no flooding occurs at the site during the 1 in 100 year plus (40%) climate change event.

Commercial in Confidence

Proposed SuDS

Tanked Permeable Paving:

- 5.17. The proposed car park and access road will be surfaced in tanked permeable pavement amounting to approximately 4481m².
- 5.18. Runoff from these areas will be collected and stored within a 0.4m gravel sub-base beneath the Tanked Permeable Paving surface. Check dams will be utilised within the subbase where the topography is on a gradient, so as to maximise storage potential. Water within the gravel sub-base will be discharged to the existing drainage ditch some 55m north of the crematorium via Hydro-Brake flow control device.
- 5.19. Surface water runoff from paved areas (910m²) will also be directed to the area of Tanked Permeable Paving.
- 5.20. Preliminary calculations indicate that tanked permeable pavement with dimensions of 4481m² x 0.4m deep x 0.3 (voids) will be sufficient to accommodate all runoff from 5391m² of impermeable areas arising from the critical 1:100 year + 40% climate change event. Refer to enclosed calculations and Plan 89699-01 [*Proposed Drainage Layout*].
- 5.21. Preliminary calculations indicated that some 409.6m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 40% climate change event.
- 5.22. All preliminary surface water drainage calculations have been undertaken using MicroDrainage software. Refer to the appendix.

Attenuation Basin:

- 5.23. Runoff from the proposed crematorium roof area (888m²) will be directed into an attenuation basin Sustainable Urban Drainage System (SUDS) situated to the south of the proposed building. The main purpose of the pond will be to attenuate all surface water generated from roof runoff; however it will also provide ecological and aesthetic benefits.
- 5.24. Runoff from proposed roof area (888m²) will be connected directly to an attenuation basin located to the south of the building.
- 5.25. Attenuated water within the pond will be discharged to the existing drainage ditch some 55m north of the crematorium via Hydro-Brake flow control device.
- 5.26. Preliminary calculations indicate that an attenuation basin with dimensions of 331m² x 1.4m deep will be sufficient to accommodate all runoff from 888m² of impermeable surfacing arising from the critical 1:100 year + 40% Climate Change event.
- 5.27. The pond will provide an attenuation volume of 65.5m³ for surface water runoff from the development. The maximum attenuated water depth within the pond will be 0.337m.
- 5.28. The basin will retain a permanent water level at a depth of 0.5m; this can be utilised to provide biodiversity enhancement as part of the development and contribute towards the POS of natural and semi natural greenspace provision. All attenuation required for management of runoff from the catchment draining to the pond will be located above the permanent water volume but below the required 0.5m freeboard.
- 5.29. The basin design includes 0.563m of freeboard, above the maximum water level. This will mitigate residual flood risk from blockage or exceedance storm events.
- 5.30. Refer to enclosed calculations and Plan 89699-01 [*Proposed Drainage Layout*].
- 5.31. All preliminary surface water drainage calculations have been undertaken using MicroDrainage software. Refer to the appendix.

Commercial in Confidence

Water Quality:

5.32. Water quality has been assessed in line with the Simple Index approach from Chapter 26 of CIRIA C753 The SuDS Manual:

Step 1 – Allocate suitable pollution hazard indices for the proposed land use. Step 2 – Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index.

5.33. The highest pollution hazard level for the proposed land use is Low (residential car parks and low trafficked roads). The pollution hazard indices for this land use are shown in Table 2 below.

Total suspended solids (TSS)	Metals	Hydrocarbons
0.5	0.4	0.4

Table 2: Pollution Hazard Indices for the proposed site (from Table 26.2 of CIRIA C753 The SuDS Manual)

5.34. All SuDS components are assessed for their effectiveness in pollutant removal prior to discharge to sewer in Table 26.3 in CIRIA C753 The SuDS Manual. The pollution mitigation indices for permeable pavements are show in Table 3 below.

Total suspended solids (TSS)	Metals	Hydrocarbons
0.7	0.6	0.7

Table 3: Pollution Mitigation Indices for permeable pavements (from Table 26.3 of CIRIA C753 The SuDS Manual)

- 5.35. The Pollution Mitigation Indices for permeable pavement are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, permeable pavements will provide sufficient water quality treatment prior to discharge to ground.
- 5.36. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.

Design Exceedance:

5.37. Should the onsite drainage system fail under extreme rainfall events or blockage, flooding may occur within the site. In the event of the drainage system failure, the runoff flow can be managed through detailing the new external levels to direct water away from structures.

Commercial in Confidence

Adoption and Maintenance:

- 5.38. All proposed SuDS features will be maintained privately by the future land owner.
- 5.39. A draft Maintenance Schedule is outlined in the Table below.

Tanked Permeable Paving

- 5.40. Permeable surfaces need to be regularly cleaned of silt and other sediments to preserve their infiltration capability. A brush and suction cleaner, which can be a lorry-mounted device or a smaller precinct sweeper, should be used and the sweeping regime should be as follows:
 - 1. End of winter (April) to collect winter debris.
 - 2. Mid-summer (July/August) to collect dust, flower and grass-type deposits.
 - 3. After autumn leaf fall (November).
- 5.41. If reconstruction is necessary, the following procedure should be followed:
 - 1. Lift surface layer and laying course.
 - 2. Remove any geotextile filter layer.
 - 3. Inspect sub-base and remove, wash and replace if required.
 - 4. Renew any geotextile layer.
 - 5. Renew laying course, jointing material and concrete block paving.
- 5.42. Materials removed from the voids or the layers below the surface of the paving may contain hazardous substances such as heavy metals and hydrocarbons which may need to be disposed of as controlled waste.

Attenuation Basin

- 5.43. It is not anticipated that the attenuation basin will require a rigorous maintenance regime as long as silt is removed on a regular basis. A suitable maintenance regime for the attenuation basin would be as follows:
 - 1. Monthly removal of litter, mowing grass & check outlet for blockages.
 - 2. Annually sediment removal and tidy dead plant growth.
 - 3. As required repair inlets and outlets and reinstate design levels. Refer to Table 5, below

Pipework and Catchpits

5.44. It is not envisaged that silt build up within the pipework systems will require a rigorous maintenance regime so long as silt is removed from upstream catch pits on a regular basis. Notwithstanding this, a suitable maintenance regime for the systems will comprise of routine inspection (every three months) and silt removal (as necessary).

Drainage Element	Maintenance Requirement	Frequency
Gutters & downpipes	 Inspect and remove silt/ debris 	 To be inspected every three months and silt/ debris removed as necessary.
Inspection Chambers and Catch Pits and Flow Controls	 Inspect and remove silt 	 To be inspected every three months and silt/ debris removed as necessary. Flow control to be checked for blockages.
Tarila d Dama abla Davian	 Sweeping/vacuuming to remove build- up of silt or other sediments 	 Three times a year or as necessary
Tanked Permeable Paving	 Removal of weeds Replacement of cracked paving blocks Remedial work to cracks and depressions 	As required

Table 4: Suggested Maintenance Regime for Elements of the Drainage Infrastructure

Note: In addition to the above maintenance requirements, it is recommended that all drainage elements are inspected:

- Following the first storm event;
- Monthly for the first 3 months following commissioning.

Commercial in Confidence

Maintenance Schedule	Required Actions	Frequency	
	Remove litter and debris	Monthly, or as required	
Regular maintenance	Cut grass – landscaped areas and access routes	Monthly (during growing season), or as required	
	Manage other vegetation and remove nuisance plants	Monthly, at start, then as requested	
Occasional	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	Annually or as required	
maintenance	Prune and trim trees and remove cuttings	As required	
	Remove sediment from pre-treatment system when 50% full	As required	
	Repair erosion or other damage by re-turfing or reseeding	As required	
Remedial actions	Relevel uneven surfaces and reinstate design levels	As required	
	Repair or rehabilitate inlets and outlets	As required	
	Inspect inlets, outlets and overflows for blockages and clear if required.	Monthly	
Monitoring	Inspect bank slopes, structures, pipework etc for evidence of physical damage	Monthly	
	Inspect inlets and pre-treatment systems of silt accumulation; establish appropriate silt removal frequencies	Half Yearly	

Table 5: Attenuation Basin Maintenance Requirements

Commercial in Confidence

6. Flood Risk Mitigation:

Physical Design Measures:

- 6.1. The NPPF requires residential finished floor levels to be 300mm above the modelled 1:100 year flood level with allowance for Climate Change.
- 6.2. The proposed development is for commercial use and the site lies entirely within Flood Zone 1 according to the EA Flood Map for planning (Rivers and the Sea), thus completely outside Flood Zone 2 and Flood Zone 3 extents.
- 6.3. Additionally, according to Environment Agency mapping, the main area of the site has been identified at "Very Low" Risk of Flooding from Surface Water.
- 6.4. Despite this, it is recommended that the finished internal floor level of the proposed crematorium is set to standard building thresholds.

Safe Escape:

- 6.5. The NPPF requires a route of safe escape for all residents and users to be provided from residential properties in Flood Zone 3. Safe escape is usually defined as being though slow moving flood water no deeper than 25cm.
- 6.6. The entire development site, and surrounding area, are located wholly within Flood Zone 1 therefore in accordance with NPPF guidance a route of safe escape is not required.

Commercial in Confidence

Flood Warning:

- 6.7. The EA is responsible for issuing flood warnings. Flood warnings are issued to the emergency services and local authorities. Both private individuals and organisations can sign-up to receive warnings via phone, text or email. This system of receiving warnings is currently voluntary.
- 6.8. Advice regarding severe flood warnings will generally be given during weather forecasts on local radio and TV. In the case of extreme events, warnings can also be disseminated via door to door visits by the police or locally appointed flood wardens.
- 6.9. The EA issue flood warnings to specific areas when flooding is expected. It is recommended that the applicant registers online with the free Environment Agency Floodline Warnings/Alert Direct service at https://fwd.environment-agency.gov.uk/app/olr/register to receive flood warnings by phone, text or email.
- 6.10. The flood warning service has three types of warnings that will help you prepare for flooding and take action:

Flood Warning	Flood Alert	Flood Warning	Severe Flood Warning
What it	Flooding is possible.	Flooding is expected.	Severe flooding.
means?	Be prepared.	Immediate action required.	Danger to life.
When it's used?	Two hours to two days in advance of flooding.	Half an hour to one day in advance of flooding.	When flooding poses a significant threat to life.
	Be prepared to act on your flood plan.	Move family, pets and valuables to a safe place.	Stay in a safe place with a means of escape.
What to	Prepare a flood kit of essential items.	Turn off gas, electricity and water supplies if safe to do so.	Be ready should you need to evacuate from your home.
do?	Monitor local water levels and the flood forecast on our website.	Put flood protection equipment in place.	Co-operate with the emergency services.
			Call 999 if you are in immediate danger.

Table 6: Flood Warnings

Commercial in Confidence

Flood Plan:

6.11. It is recommended that the applicant and future owners and occupiers of the property prepare a flood plan to protect life and property during a flood event:

Before a flood:

- Find out if you are at risk of flooding.
- Find out if you can receive flood warnings.
- Prepare and keep a list of all your important contacts to hand or save them on your mobile phone.
- Think about what items you can move now and what you would want to move to safety during a flood such as cars, furniture, and electrical equipment.
- Know how to turn off gas, electricity and water supplies.
- Prepare a flood kit of essential items and keep it handy. It can include copies of important documents, a torch, a batterypowered or wind-up radio, blankets and warm clothing, waterproofs, rubber gloves and a first aid kit including all essential medication.
- Consider buying flood protection products such as flood boards and airbrick covers to help reduce flood water getting into your property.

During a flood:

- Tune into your local radio station on a battery or wind-up radio.
- Grab your flood kit if you have prepared one.
- Collect blankets, torch, first aid kit, medication and food.
- Move important documents, personal items, valuables, and lightweight belongings upstairs or to high shelves.
- Raise large items of furniture, or put them in large bags if you have them.
- Move people, outdoor belongings and cars to higher ground.
- Switch off water, gas and electricity at mains when water is about to enter the property. Do not touch sources of electricity when standing in water.
- Fit flood protection products, if you have them, for example flood boards, airbrick covers, sandbags.
- Put plugs in sinks. Weigh them down with a pillowcase or plastic bag filled with soil.
- If you do not have non-return valves fitted, plug water inlet pipes with towels or cloths.
- Move site users to a high place with a means of escape.
- Listen to the advice of the emergency service and evacuate if told to do so.
- Avoid walking or driving through flood water. Six inches of fast-flowing water can knock over an adult and two feet of water can move a car.

After a flood:

- If you have flooded, contact your insurance company as soon as possible.
- Take photographs and videos of your damaged property as a record for your insurance company.
- If you don't have insurance, contact your local authority for information on grants and charities that may help you.
- Flood water can contain sewage, chemicals and animal waste. Always wear waterproof outerwear, including gloves, wellington boots and a face mask.
- Have your electrics, central heating and water checked by qualified engineers before switching them back on.

Commercial in Confidence

Fluvial floodplain storage:

- 6.12. The NPPF requires that where development is proposed in undefended areas of floodplain, which lie outside of the functional floodplain, the implications of ground raising operations for flood risk elsewhere needs to be considered. Raising existing ground levels may reduce the capacity of the floodplain to accommodate floodwater and increase the risk of flooding by either increasing the depth of flooding to existing properties at risk or by extending the floodplain to cover properties normally outside of the floodplain. Flood storage capacity can be maintained by lowering ground levels either within the curtilage of the development or elsewhere in the floodplain, in order to maintain at least the same volume of flood storage capacity within the floodplain.
- 6.13. In undefended tidal areas, raising ground levels is unlikely to impact on maximum tidal levels so the provision of compensatory storage should not be necessary.
- 6.14. For development in a defended flood risk area, the impact on residual flood risk to other properties needs to be considered. New development behind flood defences can increase the residual risk of flooding if the flood defences are breached or overtopped by changing the conveyance of the flow paths or by displacing flood water elsewhere. If the potential impact on residual risk is unacceptable then mitigation should be provided.
- 6.15. The proposed development is situated entirely within Flood Zone 1 when using the Environment Agency Flood Map for Planning (Rivers and Sea). No fluvial floodwater would be displaced by the proposed development.

Commercial in Confidence

7. Discussion and Conclusions:

- 7.1. This Flood Risk Assessment and Surface Water Drainage Strategy has been prepared by Unda Consulting Limited on behalf of Hartmires Investment Ltd, in support of a planning application for *Outline planning application for a single 'chapel' crematorium with abated cremator and natural burial site with associated access, car parking, landscaping and drainage.* The development is proposed at Land to the north of Turners Hill Road, Turners Hill, West Sussex RH10 4PB. This report assesses flood risk and surface water drainage for the proposed development.
- 7.2. The site is currently occupied by two fields with a car park in the south, underlain by MOT type one gravel. According to plans provided by the client a public footpath transects the centre of the site along with two drainage ditches. Following a site reconnaissance, the application boundary was found to be largely underlain by grassland with the site sloping steeply towards the north east.
- 7.3. The site is approximately 68253m² in size and accessed from the south via gravel junction, off Turners Hill Road. Information provided by the client, and noted during the site walkover, indicates that part of the current site is underlain by MOT type one gravel and soft landscaping. As such the existing site is considered to be formed of entirely permeable coverage.
- 7.4. A topographical contour map has been provided by the client for inclusion within the report. This shows that levels within the southern field, proposed to be developed, range between 150.00mAOD, relating to land along the north eastern boundary, and 169.00mAOD in the south east, associated with land adjacent to Turner Hill Road.
- 7.5. A site reconnaissance confirmed that the site slopes steeply from south eastern corner towards north eastern periphery.
- 7.6. The area of land proposed to be developed in the centre of the site is recorded as having an approximate elevation of 164.00mAOD (refer to report appendix).
- 7.7. The proposed planning application is for *Outline planning application for a single 'chapel' crematorium with abated cremator and natural burial site with associated access, car parking, landscaping and drainage.*
- 7.8. Post development the total area of newly introduced impermeable surfacing will amount to approximately 6279m². This comprises the crematorium roof area (888m²), 112 space car park and access road (4481m²) and, paved areas (910m²).
- 7.9. The 1:50,000 BGS map shows the site to be located directly upon the bedrock geology of Ardingly Sandstone Formation Sandstone. The soil type taken from the UK soils website shows deep intermediate Sandstone with a Sand to Sandy Loam texture.
- 7.10. There are no nearby BGS borehole logs.
- 7.11. Published Environment Agency Groundwater Vulnerability mapping shows that the site is not located within an area classified as a Groundwater Source Protection Zone.
- 7.12. Given the current use of the site, and the information provided by the client, it can confidently be assumed that there are no formal surface water connections to Thames Water assets from within the red application boundary.
- 7.13. Surface water generated within the existing site boundary is considered likely to currently discharge at an uncontrolled rate to ground, and via overland/subsurface flow into the two aforementioned drainage ditches.

Flood Risk Discussion

- 7.14. The site and surrounding area are located entirely within Flood Zone 1 (Low Probability), defined as land having less than a 1:1000 annual probability of fluvial or tidal flooding. In light of this, the site is considered to be at very low risk of both river and tidal flooding.
- 7.15. The EA Risk of Flooding from Surface Water Map suggests that the majority of the site, including the proposed crematorium building, lies within an area of "Very Low" risk of flooding from surface water.
- 7.16. Despite the site being located entirely in Flood Zone 1 and at low risk of surface water flooding, it is recommended that the finished internal floor level of the proposed crematorium is set to standard building thresholds.
- 7.17. No information has been provided which indicates that the site is at risk of groundwater or sewer surcharge flooding.

Commercial in Confidence

Surface Water Drainage Discussion

- 7.18. Despite being located directly upon Ardingly Sandstone Formation, the site is proposed to be utilised as a crematorium and burial ground.
- 7.19. Due to the existing permitted and proposed usage as a burial site infiltration to ground is not considered suitable.
- 7.20. In light of the above, an attenuation based strategy is proposed.
- 7.21. Existing greenfield runoff rates for the newly introduced impermeable areas (6279m²) have been calculated as 3.0 l/s for the 1:1 annual runoff event, 8.1 l/s for the 1:30 year event and 11.4 l/s for the 1:100 year event. Refer to enclosed calculations.
- 7.22. It is proposed that runoff from all SuDS features will be gradually discharged to the existing drainage ditch some 55m north of the proposed crematorium, via a new outfall connection (refer to proposed drainage layout in the report appendix).
- 7.23. Outflow from the proposed SuDS systems to the drainage ditch will be limited to greenfield runoff rate.
- 7.24. Discharge from the site will be limited to 3.0 l/s for all storms up to, and including, the 1:100 year + 40% climate change event via a hydrobrake. The hydrobrake will be installed in an inspection chamber within the site.
- 7.25. The proposed SuDS features will be of sufficient size to ensure attenuation of all post development surface water runoff generated during the 1 in 100 year plus climate change event.
- 7.26. Key stakeholders would like to incorporate a pond within the proposed scheme to offer both amenity and biodiversity benefits. Given the preferred location of the pond, it is proposed that all post development roof runoff from the crematorium building will be directed and stored within a pond.
- 7.27. Post development surface water runoff generated from the car park, access road and paved areas will be managed via tanked permeable paving SuDS system located beneath the access road and car park.
- 7.28. The following section details the surface water attenuation volumes required to ensure that no flooding occurs at the site during the 1 in 100 year plus (40%) climate change event.

Tanked Permeable Paving

- 7.29. The proposed car park and access road will be surfaced in tanked permeable pavement amounting to approximately 4481m².
- 7.30. Runoff from these areas will be collected and stored within a 0.4m gravel sub-base beneath the Tanked Permeable Paving surface. Check dams will be utilised within the subbase where the topography is on a gradient, so as to maximise storage potential. Water within the gravel sub-base will be discharged to the existing drainage ditch some 55m north of the crematorium via Hydro-Brake flow control device.
- 7.31. Surface water runoff from paved areas (910m²) will also be directed to the area of Tanked Permeable Paving.
- 7.32. Preliminary calculations indicate that tanked permeable pavement with dimensions of 4481m² x 0.4m deep x 0.3 (voids) will be sufficient to accommodate all runoff from 5391m² of impermeable areas arising from the critical 1:100 year + 40% climate change event. Refer to enclosed calculations and Plan 89699-01 [*Proposed Drainage Layout*].
- 7.33. Preliminary calculations indicated that some 409.6m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 40% climate change event.

Attenuation Basin

- 7.34. Runoff from the proposed crematorium roof area (888m²) will be directed into an attenuation basin Sustainable Urban Drainage System (SUDS) situated to the south of the proposed building. The main purpose of the pond will be to attenuate all surface water generated from roof runoff; however it will also provide ecological and aesthetic benefits.
- 7.35. Runoff from proposed roof area (888m²) will be connected directly to an attenuation basin located to the south of the building.
- 7.36. Attenuated water within the pond will be discharged to the existing drainage ditch some 55m north of the crematorium via Hydro-Brake flow control device.

Commercial in Confidence

- UND/
- 7.37. Preliminary calculations indicate that an attenuation basin with dimensions of $331m^2 \times 1.4m$ deep will be sufficient to accommodate all runoff from $888m^2$ of impermeable surfacing arising from the critical 1:100 year + 40% Climate Change event.
- 7.38. The pond will provide an attenuation volume of 65.5m³ for surface water runoff from the development. The maximum attenuated water depth within the pond will be 0.337m.
- 7.39. The basin will retain a permanent water level at a depth of 0.5m; this can be utilised to provide biodiversity enhancement as part of the development and contribute towards the POS of natural and semi natural greenspace provision. All attenuation required for management of runoff from the catchment draining to the pond will be located above the permanent water volume but below the required 0.5m freeboard.
- 7.40. The basin design includes 0.563m of freeboard, above the maximum water level. This will mitigate residual flood risk from blockage or exceedance storm events.
- 7.41. The Pollution Mitigation Indices for permeable pavement are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, permeable pavements will provide sufficient water quality treatment prior to discharge to ground.
- 7.42. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.
- 7.43. Should the onsite drainage system fail under extreme rainfall events or blockage, flooding may occur within the site. In the event of the drainage system failure, the runoff flow can be managed through detailing the new external levels to direct water away from structures.
- 7.44. It is proposed that all SuDS facilities will be maintained privately by the end user. A draft Maintenance Schedule is outlined within the report.
- 7.45. This drainage strategy has been undertaken in accordance with the principles set out in NPPF. We can conclude that providing the development adheres to the conditions advised above, the said development proposals can be accommodated without increasing flood risk within the locality in accordance with objectives set by Central Government and the EA.

Unda Consulting Limited August 2020

Commercial in Confidence

8. Appendix

A - Plans by others:

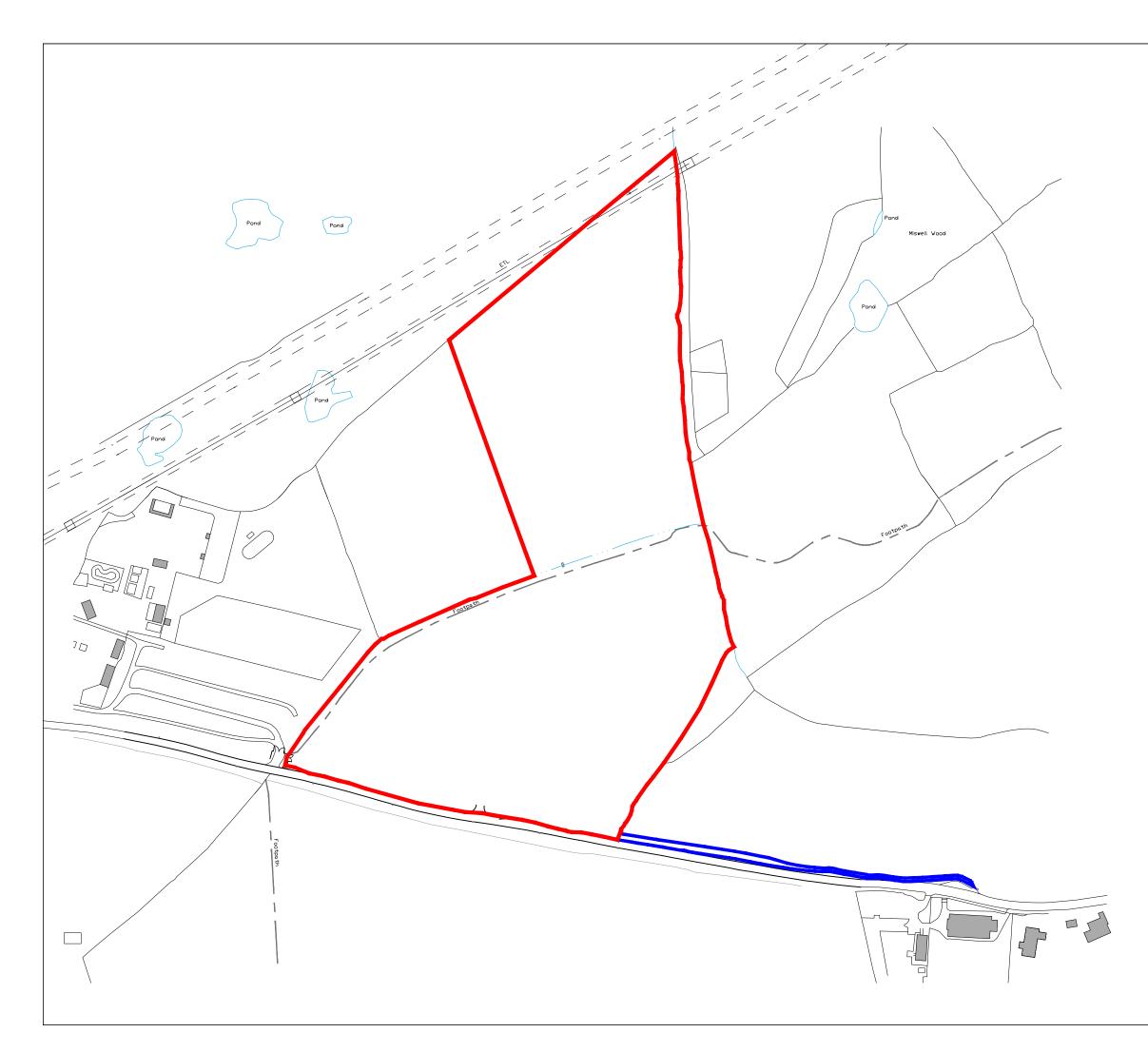
- Location Plan Indigo Landscape Architects Limited;
- Proposed Development Layout Plan with Contour Mapping Indigo Landscape Architects Limited.

B - MicroDrainage Calculations:

- ICP SUDS Rural Runoff Calculations Southern Field;
- ICP SUDS Rural Runoff Calculations Newly Introduced Impermeable Areas Only (6279m²);
- Tanked Permeable Paving Calculations;
- Attenuation Basin (Pond) Calculations.

C - Plans:

• 1:500 Scale Proposed Drainage Layout [89699-01].


Commercial in Confidence

Appendix A

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, RH11 0PR. +44 (0) 1293 214 444. info@unda.co.uk

Commercial in Confidence

0 Metre	20 50 s	100m Scale 1:2500	
		٨	NORTH
- FIRST ISSUE rev description		2020-06-29 date	MH MG by chk
^{project} TURNERS HILL	CREMATO	RIUM	
client HARTMIRES IN	VESTMENT	s ltd	
drawing title LOCATION PL/	AN		
drawing number 917-GA-03	revision -	^{status} PLANNING	scale 1:2500@A3
		IDSCAPE.CO.UK WWW.IND	

Appendix **B**

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, RH11 0PR. +44 (0) 1293 214 444. info@unda.co.uk

Commercial in Confidence

Unda Consulting Ltd		Page 1
Southpoint	Greenfield Runoff Rate	
Old Brighton Road	Southern Development Area	
Gatwick RH11 OPR	89699-Muntham-TurnersHill	Mirro
Date 18/06/2020	Designed by TS	Drainage
File	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	1

ICP SUDS Mean Annual Flood

Input

Return Period (ye	ears)	100		Soil	0.45	50
Area	(ha)	3.939		Urban	0.00	0
SAAR	(mm)	875	Region	Number	Region	6

Results 1/s

QBAR Rural 22.5 QBAR Urban 22.5 Q100 years 71.7 Q1 year 19.1 Q30 years 50.9 Q100 years 71.7

Unda Consulting Ltd		Page 1
Southpoint	Impermeable Areas Only (6279)	
Old Brighton Road	Greenfield Runoff Rate	
Gatwick RH11 OPR	89699-Muntham-TurnersHill	Micro
Date 24/07/2020	Designed by TS	Drainage
File	Checked by EJ	Diamaye
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (ye	ears)	100		Soil	0.45	50
Area	(ha)	0.628		Urban	0.00	0
SAAR	(mm)	875	Region	Number	Region	6

Results 1/s

QBAR Rural 3.6 QBAR Urban 3.6 Q100 years 11.4 Q1 year 3.0 Q30 years 8.1 Q100 years 11.4

Jnda Cons	sulting Lt	zd							Page 1
Southpoint Tanked Permeable Paving									
Old Brigh	nton Road			Runc	off Fr	om Hardst	andinc	Areas	5
Gatwick RH11 OPR 89699-Muntham-TurnersHill									
Date 29/07/2020 Designed by TS								— Micro	
, -	,				2	-			Drainac
File TPP.	. SRCX				cked b	-			
Innovyze				Sour	ce Co	ntrol 202	20.1		
	Summar	y of Rea	sults	for 10)0 yea	r Return	Perio	d (+40%	<u> </u>
		į	Half Di	rain Tim	ne : 13	79 minutes			
	Storm	Max	Max	Ma	x	Max	Max	Max	Status
	Event	Level	Depth	Infiltr	ation (Control S	Outflow	Volume	
		(m)	(m)	(1/	s)	(1/s)	(l/s)	(m³)	
15	min Summer	163.552	0.082		0.0	2.1	2.1	109.7	ОК
30	min Summer	163.584	0.114		0.0	2.5	2.5	153.9	Flood Risk
60	min Summer	163.620	0.150		0.0	2.5	2.5	201.3	Flood Risk
120	min Summer	163.655	0.185		0.0	2.5	2.5	249.3	Flood Risk
180	min Summer	163.675	0.205		0.0	2.5	2.5	275.5	Flood Risk
240	min Summer	163.687	0.217		0.0	2.5	2.5	292.3	Flood Risk
360	min Summer	163.705	0.235		0.0	2.5	2.5	315.7	Flood Risk
480	min Summer	163.716	0.246		0.0	2.5	2.5	330.2	Flood Risk
600	min Summer	163.723	0.253		0.0	2.5	2.5	339.8	Flood Risk
720	min Summer	163.727	0.257		0.0	2.5	2.5	346.0	Flood Risk
960	min Summer	163.732	0.262		0.0	2.5	2.5	351.8	Flood Risk
1440	min Summer	163.732	0.262		0.0	2.5	2.5	352.4	Flood Risk
	min Summer				0.0	2.5			Flood Risk
	min Summer				0.0	2.5			Flood Risk
	min Summer				0.0	2.5			Flood Risk
	min Summer				0.0	2.5			Flood Risk
	min Summer				0.0	2.5			Flood Risk
	min Summer				0.0	2.5			Flood Risk
	min Summer				0.0	2.5			Flood Risk
15	min Winter	. TO2.203	0.093		0.0	2.3	2.3	125.5	O K
		Storm		Rain	Floode	d Discharg	ge Time-	Peak	
		Event		(mm/hr)	Volum	e Volume	(mi	ns)	
					(m³)	(m³)			
		15 min S	ummer	131.851	0.	0 76.	. 6	19	
		30 min S	ummer	88.566	0.	0 114.	. 9	34	
		60 min S	ummer	56.713	0.	0 182.	. 4	64	
		120 min S	ummer	35.004	0.	0 231.	. 3	124	
		180 min S	ummer	25.973	0.	0 259.	. 3	182	
		240 min S	ummer	20.877	0.	0 278.	. 2	242	
		360 min S	ummer	15.365	0.	0 305.	. 9	362	
		100 1 0		10 011	~	0 001	-	100	

©1982-2020 Innovyze									
	15	11111	winter	131.031	0.0	90.2	19		
				1.137 131.851		636.2 90.2	5840 19		
				1.284	0.0	630.6	4320 5096		
				1.483	0.0		4328		
				1.771	0.0	601.5	3576		
	4320	min	Summer	2.226	0.0	538.8	2768		
	2880	min	Summer	3.068	0.0	516.6	1964		
	2160	min	Summer	3.848	0.0	493.1	1576		
	1440	min	Summer	5.284	0.0	339.8	1210		
	960	min	Summer	7.241	0.0	353.8	960		
	720	min	Summer	9.042	0.0	346.2	720		
	600	min	Summer	10.402	0.0	337.5	602		
	480	min	Summer	12.341	0.0	324.5	482		
	200	11111	Summer	10.000	0.0	505.9	502		

Unda Consulting Ltd		Page 2
Southpoint	Tanked Permeable Paving	
Old Brighton Road	Runoff From Hardstanding Areas	
Gatwick RH11 0PR	89699-Muntham-TurnersHill	Micro
Date 29/07/2020	Designed by TS	
File TPP.SRCX	Checked by EJ	Drainage
Innovyze	Source Control 2020.1	-

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	inter	163.600	0.130	0.0	2.5	2.5	175.3	Flood Risk
60	min W:	inter	163.640	0.170	0.0	2.5	2.5	228.6	Flood Risk
120	min W:	inter	163.680	0.210	0.0	2.5	2.5	282.9	Flood Risk
180	min W	inter	163.703	0.233	0.0	2.5	2.5	312.8	Flood Risk
240	min W	inter	163.717	0.247	0.0	2.5	2.5	332.1	Flood Risk
360	min W	inter	163.737	0.267	0.0	2.5	2.5	359.4	Flood Risk
480	min W	inter	163.750	0.280	0.0	2.5	2.5	377.0	Flood Risk
600	min W	inter	163.760	0.290	0.0	2.5	2.5	389.2	Flood Risk
720	min W	inter	163.766	0.296	0.0	2.5	2.5	397.7	Flood Risk
960	min W	inter	163.773	0.303	0.0	2.5	2.5	407.3	Flood Risk
1440	min W	inter	163.775	0.305	0.0	2.5	2.5	409.6	Flood Risk
2160	min W	inter	163.765	0.295	0.0	2.5	2.5	396.9	Flood Risk
2880	min W	inter	163.753	0.283	0.0	2.5	2.5	380.5	Flood Risk
4320	min W	inter	163.721	0.251	0.0	2.5	2.5	337.9	Flood Risk
5760	min W	inter	163.688	0.218	0.0	2.5	2.5	292.6	Flood Risk
7200	min W	inter	163.656	0.186	0.0	2.5	2.5	249.9	Flood Risk
8640	min W	inter	163.628	0.158	0.0	2.5	2.5	211.9	Flood Risk
10080	min W	inter	163.604	0.134	0.0	2.5	2.5	179.9	Flood Risk

	Stor	m	Rain		Discharge	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			00 500	0 0	100.0	2.2
		Winter		0.0	132.3	33
60	min	Winter	56.713	0.0	208.0	62
120	min	Winter	35.004	0.0	262.0	122
180	min	Winter	25.973	0.0	292.4	180
240	min	Winter	20.877	0.0	312.6	240
360	min	Winter	15.365	0.0	340.9	356
480	min	Winter	12.341	0.0	357.9	474
600	min	Winter	10.402	0.0	367.3	590
720	min	Winter	9.042	0.0	370.5	704
960	min	Winter	7.241	0.0	364.2	932
1440	min	Winter	5.284	0.0	338.1	1368
2160	min	Winter	3.848	0.0	555.1	1728
2880	min	Winter	3.068	0.0	580.6	2164
4320	min	Winter	2.226	0.0	600.5	3028
5760	min	Winter	1.771	0.0	684.0	3864
7200	min	Winter	1.483	0.0	705.8	4616
8640	min	Winter	1.284	0.0	721.2	5360
10080	min	Winter	1.137	0.0	730.1	6048

©1982-2020 Innovyze

Unda Consulting Ltd		Page 3
Southpoint	Tanked Permeable Paving	
Old Brighton Road	Runoff From Hardstanding Areas	
Gatwick RH11 OPR	89699-Muntham-TurnersHill	Micro
Date 29/07/2020	Designed by TS	Drainage
File TPP.SRCX	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.350	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.539

Time	(mins)	Area
From:	To:	(ha)

0 4 0.539

Pid Brighton Road Runoff From Hardstanding Areas Satwick RH11 OPR 89699-Muntham-TurnersHill Pate 29/07/2020 Designed by TS Checked by EJ Checked by EJ Innovyze Source Control 2020.1 Model Details Storage is Online Cover Level (m) 163.870 Porous Car Park Structure Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Max Percolation (1/s) 1244.7 Slope (1:X) 0.0 Safety Factor 2.0 Depression Storage (mm)	ge 4	Page					lting Ltd	Inda Consul		
atwick RH11 OPR 89699-Muntham-TurnersHill ate 29/07/2020 Designed by TS Checked by EJ Designed by TS ile TPP.SRCX Checked by EJ Designed by TS nnovyze Source Control 2020.1 Model Details Model Details Source Control 2020.1 Model Details Storage is Online Cover Level (m) 163.870 Derous Car Park Structure Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 448.1 Membrane Percolation (1/n) 1000 Length (m) 0.400 Max Percolation (1/n) 1244.7 Slope (1:x) 0.30 Max Percolation (1/n) 1244.7 Slope (1:x) 0.400 Max Percolation (1/n) 1244.7 Slope (1:x) 0.400 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0084-2500-0400-2500 Design Flow (1/s) 2.5 Flush-Flow Calculated Objective Minise upstream storage Surface Sump Available Yes Diameter (mm) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Sugestet Manhole Diameter (mm) 1200			Paving	ermeable Pav	Tanked 1			outhpoint		
ate 29/07/2020 ile TPP.SRCX Designed by TS Checked by EJ Source Control 2020.1 Model Details Storage is Online Cover Level (m) 163.870 Porous Car Park Structure Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Length (m) 10.0 Max Percolation (mm/hr) 1000 Evaporation (mm/day) 3 Invert Level (m) 163.470 Unit Reference MD-SHE-0084-2500-0400-2500 Design Flow (1/s) 2.5 Flush-Flo ^m Calculated Objective Minnise upstream storage Application Surgaested Manhole Diameter (mm) Minimum Outlef Pipe Diameter (mm) Suggested Manhole Diameter (mm) Design Point (Calculated) 0.400 Suggested Manhole Diameter (mm) Design Point (Calculated) 0.133 L2.5 Flush-Flo ^m Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 Suggested Manhole Diameter (mm) The hydrological calculations have been based on the Head/Discharge relationship Hydro-BrakeO Optimum 0 flow (1/s) Design Point (Calculated) 0.400 Suggested Manhole Diameter (mm) The hydrological calculations have been based on the Head/Discharge relationship Hydro-BrakeO Optimum 0 flow (1/s) Design Point (Calculated) 0.400 Control Points Head (m) Flow (1/s) Destin Flow 0.133 L2.5 Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-BrakeO Optimum 0 flow (1/s) Destin Flow 0.133 L2.5 Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-BrakeO Optimum 0 flow (1/s) Destin Flow 0.1/s) Destin Flow 0.1/s Des		as	tanding Areas	rom Hardstar	Runoff 1		on Road	ld Bright		
Designed by TS Checked by EJ ile TPP.SRCX Checked by EJ nnovyze Source Control 2020.1 Model Details Source Control 2020.1 Model Details Storage is Online Cover Level (m) 163.870 Decigned by TS Decigned by TS Model Details Storage is Online Cover Level (m) 163.870 Decigned by TS Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Mark Percolation (mm/hr) 1000 Mark Percolation (mm/hr) 1000 Mark Percolation (mm/day) 3 Invert Level (m) 163.470 Calculated Objective Minimise upstream storage Application Sump Available Sump Available Invert Level (m) 163.470 Mark Envertem Sump Available Sump Available Sumpavai	irm	Mig	nersHill	ntham-Turner	89699-Mi		H11 OPR	atwick R		
Intervent Encoded by additional structure Source Control 2020.1 Model Details Storage is Online Cover Level (m) 163.870 Derous Car Park Structure Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Length (m) 10.0 Mark Percolation (mm/hr) 1000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Length (m) 10.0 Mark Percolation (mm/hr) 1000 Length (m) 10.0 Mark Percolation (mm/hr) 1000 Length (m) 0.400 Mark Percolation (mm/hay) 3 Invert Level (m) 163.470 Calculated Diameter (m) Cutflow Control Unit Reference MD-SHE-0084-2500-0400-2500 Design Flow (1/s) 2 Flush-Flow Calculated Objective Minimise upstream storage Application Sump Available Yeas Diameter (mm) 1200				by TS	Designed		/2020	ate 29/07,		
Model Details Storage is Online Cover Level (m) 163.870 Porous Car Park Structure Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Length (m) 10.0 Max Percolation (1/s) 1244.7 Slope (1:X) 0.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0084-2500-0400-2500 Design Head (m) 0.400 Design Flow (1/s) 2.5 Flush-Flow Calculated Objective Minimise upstream storage Montinum Outlet Pipe Diameter (mm) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Kick-Flo@ 0.233 2.5 Kick-Flo@ 0.233 2.5 Mean Flow over Head Range - 2.1 The hydrological calculation		DIC								
Jorage is Online Cover Level (m) 163.870 DOUDL CALL PARK STRUCTURE Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Length (m) 10.0 Max Percolation (1/s) 1244.7 Slope (1:x) 0.0 Max Percolation (1/s) 1244.7 Slope (1:x) 0.400 Safety Factor 2.0 Depression Storage (mm/day) 3 Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 Design Flow (1/s) Design Flow (1/s) 2.5 Flush-Flow Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 163.470 100 200 Minimum Outlet Pipe Diameter (mm) 100 200 Cotrol Point Pead (n) Flow (1/s) Design Flow (1/s) 2.5 Flush-Flow 0.133 2.5 Minimum Outlet Pipe Diameter (mm) 103 2.5 Kick-Flow 0.23 2.1 Man Flow over Head Rang - 1 1 1 1 1 1 <			20.1	ontrol 2020.	Source (Innovyze		
Porous Car Park Structure Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Length (m) 10.0 Max Percolation (1/s) 1244.7 Slope (1::) 0.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 Design Head (m) 0.400 Design Flow (1/s) 2.5 Flush-Flow Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 84 Trivert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 1200 Cotrol Point Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Flush-Flow 0.133 2.5 Kick-Flow 0.293 2.2 Man Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Phydro-Brake Optimum as				ails	<u>Model Det</u>					
Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 448.1 Membrane Percolation (mm/hr) 1000 Length (m) 10.0 Max Percolation (1/s) 1244.7 Slope (1:X) 0.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 Design Head (m) 0.400 2.5 Flush-Flo ^m Calculated Objective Minimise upstream Surface Sump Available Yes Diameter (mm) 84 Invert Level (m) 163.470 100 Suggested Manhole Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Foint (Calculated) 0.400 2.5 Flush-Flo ^m 0.133 2.5 Kick-Flo@ 0.293 2.2 Man Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Phydro-Brake@ Optimum as specified. Should another type of control device other Pydro-Brake@ Optimum as specified. Should			163.870	Level (m) 163	Online Cover	Storage is				
Membrane Percolation (mm/hr) 1000 Length (m) 10.0 Max Percolation (1/s) 1244.7 Slope (1:X) 0.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0084-2500-0400-2500 Design Head (m) 0.400 Design Flow (1/s) 2.5 Flush-Flom Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Flush-Flo [®] 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Di			2	Structure	ous Car Park	Por				
Max Percolation (1/s) 1244.7 Slope (1:X) 0.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0084-2500-0400-2500 Design Head (m) 0.400 Design How (1/s) 2.5 Flush-Flow Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 84 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 2.5 Flush-Flow 0.133 2.5 Kick-Flo@ 0.133 2.5 Kick-Flo@ 0.133 2.5 Kick-Flo@ 0.133 2.5 Kick-Flo@ 0.133 2.5 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Phydro-Brake Optimum as specified. Should another type of control device other Hydro-Brake Optimum be utilised then these storage routing calculati	.1	(m) 448.1	Width (m)	0000	ase (m/hr) 0.0	fficient B	ltration Coe	Infi		
Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 Heade Optimum Outflow Control Unit Reference MD-SHE-0084-2500-0400-2500 Design Head (m) 0.400 Design Foint (level (m) 163.470 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Read (m) Flow (l/s) Design Point (Calculated) 0.400 2.5 Flush-Flo* 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range <td>.0</td> <td></td> <td>-</td> <td>000</td> <td>on (mm/hr)</td> <td>Percolati</td> <td>Membrane</td> <td></td>	.0		-	000	on (mm/hr)	Percolati	Membrane			
Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0084-2500-0400-2500 Design Head (m) 0.400 Design Head (m) 0.400 Design Flow (1/s) 2.5 Flush-Flow Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Flush-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other Hydro-Brake@ Optimum be utilised then these storage routing calculations will be invalidated 7.000 0.100 2.5 1.200 4.1 3.000 6.4					,		M			
Invert Level (m) 163.470 Cap Volume Depth (m) 0.400 <u>Hydro-Brake® Optimum Outflow Control</u> Unit Reference MD-SHE-0084-2500-0400-2500 Design Head (m) 0.400 Design Flow (1/s) 2.5 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 163.470 Minimum Outlet Fipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Flush-Flo ^m 0.133 2.5 Kick-Flo [®] 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other Hydro-Brake@ Optimum be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.550 6.8 7.550 0.200 2.4 1.400 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.550 7.7 8.550 0.500 2.8 2.000 5.3 5.000 8.1 9.000 0.600 3.4 2.200 5.7 6.000 8.9	3					Sdl				
Unit Reference MD-SHE-0084-2500-0400-2500 Design Flow (1/s) 0.400 Design Flow (1/s) 2.5 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 84 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Flush-Flo ^m 0.133 2.5 Kick-Flo [®] 0.133 2.5 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other 100 Notion 2.5 1.200 4.1 3.000 6.4 7.000 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7		-				Invert				
Design Head (m) 0.400 Design Flow (1/s) 2.5 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 84 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Kick-Flo@ 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.3 5.500 8.500			ontrol	Outflow Cont	.ke® Optimum	Hydro-Bra				
Design Flow (1/s) 2.5 Flush-Flo ^{md} Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 84 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Flush-Flo [®] 0.133 2.5 Kick-Flo [®] 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8<		500	4-2500-0400-2500	MD-SHE-0084-2	Unit Reference					
Flush-Flow Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 84 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.400 2.5 Flush-Flo ^m 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated 0.100 2.5 1.200 4.1 0.300 2.2 1.600 4.7 4.000					-					
Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) Binnvert Level (m) 163.470 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 0.400 2.5 Flush-Flo ^m 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other Hydro-Brake Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow 0.100 2.5 1.200 4.1 0.200 2.4 1.400 4.4 0.300 2.2 1.600 4.7 0.300 2.2 1.600 4.7 0.300 2.2					-	Des				
Application Surface Sump Available Yes Diameter (mm) 84 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 0.400 2.5 Flush-Flo [®] 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other Hydro-Brake Optimum be utilised then these storage routing calculations will be 100 0.100 2.5 1.200 4.1 0.100 2.5 1.200 4.1 0.100 2.5 1.200 4.1 0.100 2.5 1.200 4.1 0.100 2.5 1.200 4.1 0.100 2.5 1.200 4.1 0.300 2.2 1.600 4.7				Minimise ups						
Diameter (mm) 84 Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 100 Control Points Head (m) Flow (l/s) Design Point (Calculated) 0.400 2.5 Flush-Flo™ 0.133 2.5 Kick-Flo™ 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake® Optimum as specified. Should another type of control device other of Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.5										
Invert Level (m) 163.470 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 0.400 2.5 Flush-Flo™ 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other Hydro-Brake Optimum® be utilised then these storage routing calculations will be 0.100 2.5 0.100 2.5 1.200 4.1 0.300 2.2 1.600 4.7 0.400 2.5 1.200 4.1 0.100 2.5 1.200 4.1 0.300 2.2 1.600 4.7 0.300 2.2 1.600 4.7 0.400 2.5 1.800 5.0 0.400 2.8 2.000 5.3 5.000 8.1 0.600 3.4 2.400 5.7 6.000 8.9 9.					-					
Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 0.400 2.5 Flush-Flo™ 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake@ Optimum as specified. Should another type of control device other thydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Pepth (m) Flow 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.5 9.500 0.600 3.0 2.200 5.5 5.500 8.5 9.500					• • •	Tn				
Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Design Point (Calculated) 0.400 2.5 Flush-Flo™ 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake® Optimum as specified. Should another type of control device other thydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Pepth (m) Flow 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.5 9.500 0.600 3.0 2.200 5.5 5.500 8.					• •		Minimum C			
Design Point (Calculated) 0.400 2.5 Flush-Flo™ 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake® Optimum as specified. Should another type of control device other Hydro-Brake@ Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.1 9.000 0.600 3.0 2.200 5.5 5.500 8.5 9.500		200	1200			-				
Flush-Flo ^M 0.133 2.5 Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake® Optimum as specified. Should another type of control device other Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.1 9.000 0.600 3.0 2.200 5.5 5.500 8.5 9.500			Low (1/s)	Head (m) Flow	l Points	Contro				
Kick-Flo® 0.293 2.2 Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake® Optimum as specified. Should another type of control device other Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.1 9.000 0.600 3.0 2.200 5.5 5.500 8.5 9.500			2.5	0.400	(Calculated)	esign Point	De			
Mean Flow over Head Range - 2.1 The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake® Optimum as specified. Should another type of control device other Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.1 9.000 0.600 3.0 2.200 5.5 5.500 8.5 9.500										
The hydrological calculations have been based on the Head/Discharge relationship Hydro-Brake® Optimum as specified. Should another type of control device other Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.1 9.000 0.600 3.0 2.200 5.5 5.500 8.5 9.500				0.293		aan Flow or	M			
Hydro-Brake® Optimum as specified. Should another type of control device other Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.1 9.000 0.600 3.0 2.200 5.5 5.500 8.5 9.500 0.800 3.4 2.400 5.7 6.000 8.9 9.500			2.1	_	er neau kange	ean riow ov	1410			
0.100 2.5 1.200 4.1 3.000 6.4 7.000 0.200 2.4 1.400 4.4 3.500 6.8 7.500 0.300 2.2 1.600 4.7 4.000 7.3 8.000 0.400 2.5 1.800 5.0 4.500 7.7 8.500 0.500 2.8 2.000 5.3 5.000 8.1 9.000 0.600 3.0 2.200 5.5 5.500 8.5 9.500 0.800 3.4 2.400 5.7 6.000 8.9 9.500	than a	Lce other	f control device	ther type of c	d. Should and	as specifie	e® Optimum a e Optimum® k	Hydro-Brak Hydro-Brak		
0.2002.41.4004.43.5006.87.5000.3002.21.6004.74.0007.38.0000.4002.51.8005.04.5007.78.5000.5002.82.0005.35.0008.19.0000.6003.02.2005.55.5008.59.5000.8003.42.4005.76.0008.99.000	v (l/s)	(m) Flow	w (l/s) Depth (m)	th (m) Flow (Flow (l/s) De	Depth (m)	Flow (l/s)	Depth (m)		
0.3002.21.6004.74.0007.38.0000.4002.51.8005.04.5007.78.5000.5002.82.0005.35.0008.19.0000.6003.02.2005.55.5008.59.5000.8003.42.4005.76.0008.9	9.6									
0.4002.51.8005.04.5007.78.5000.5002.82.0005.35.0008.19.0000.6003.02.2005.55.5008.59.5000.8003.42.4005.76.0008.9	9.9 10.3									
0.5002.82.0005.35.0008.19.0000.6003.02.2005.55.5008.59.5000.8003.42.4005.76.0008.9	10.3									
0.800 3.4 2.400 5.7 6.000 8.9	10.9									
	11.2	500								
1.000 5.0 2.000 5.9 0.500 9.5										
				0.000	5.9	2.000	5.0	1.000		
©1982-2020 Innovyze										

Unda Consul	ting Ltd						Page 1
Southpoint		P	ond Si	zing			
Old Brighto							
Gatwick RH	11 OPR	8	9699-M	untham-	Turner	sHill	Micro
Date 29/07/	2020	D	esigne	d by TS	5		
File Pond -	Final.SRCX	C	hecked	by EJ			Drainage
Innovyze		S	ource	Control	2020.	1	
-							
	<u>Summary of Resul</u>	ts for	100 y	ear Ret	turn Pe	eriod (+40%)	_
	Storm	Max	Max	Max	Max	Status	
	Event	Level (m)	Depth (m)	Control (1/s)	(m ³)		
		(111)	(111)	(1/3)	(111)		
	15 min Summer					Flood Risk	
	30 min Summer			0.5		Flood Risk	
	60 min Summer 120 min Summer			0.5		Flood Risk Flood Risk	
	180 min Summer			0.5		Flood Risk	
	240 min Summer			0.5		Flood Risk	
	360 min Summer			0.5		Flood Risk	
	480 min Summer			0.5		Flood Risk	
	600 min Summer 720 min Summer			0.5		Flood Risk Flood Risk	
	960 min Summer			0.5		Flood Risk	
	1440 min Summer	163.38	9 0.289	0.5		Flood Risk	
	2160 min Summer	163.37	6 0.276	0.5	52.3	Flood Risk	
	2880 min Summer			0.5		Flood Risk	
	4320 min Summer 5760 min Summer			0.5		Flood Risk Flood Risk	
	7200 min Summer			0.5		Flood Risk	
	8640 min Summer			0.5		Flood Risk	
	10080 min Summer	163.22	5 0.125	0.5	22.3	Flood Risk	
	15 min Winter					Flood Risk	
	30 min Winter	163.278	8 0.1/8	0.5	32.4	Flood Risk	
	Storm	Rai			charge !	Time-Peak	
	Event	(mm/)	hr) Vol		olume	(mins)	
			(n	13)	(m³)		
	15 min Summe			0.0	20.6	19	
	30 min Summe			0.0	27.6	34	
	60 min Summe			0.0	37.1	64	
	120 min Summe			0.0	45.8 50.9	124 182	
	180 min Summa					エレム	
	180 min Summe 240 min Summe			0.0	54.5	242	
		er 20.	877				
	240 min Summe 360 min Summe 480 min Summe	er 20. er 15. er 12.	877 365 341	0.0 0.0 0.0	54.5 60.0 64.0	242 362 482	
	240 min Summe 360 min Summe 480 min Summe 600 min Summe	er 20. er 15. er 12. er 10.	877 365 341 402	0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1	242 362 482 602	
	240 min Summe 360 min Summe 480 min Summe 600 min Summe 720 min Summe	er 20. er 15. er 12. er 10. er 9.	877 365 341 402 042	0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5	242 362 482 602 720	
	240 min Summe 360 min Summe 480 min Summe 600 min Summe	er 20. er 15. er 12. er 10. er 9. er 7.	877 365 341 402 042 241	0.0 0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5 72.5	242 362 482 602 720 952	
	240 min Summa 360 min Summa 480 min Summa 600 min Summa 720 min Summa 960 min Summa	er 20. er 15. er 12. er 10. er 9. er 7. er 5.	877 365 341 402 042	0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5	242 362 482 602 720	
	240 min Summa 360 min Summa 480 min Summa 600 min Summa 720 min Summa 960 min Summa 1440 min Summa 2160 min Summa	er 20. er 15. er 12. er 10. er 9. er 7. er 5. er 3. er 3.	877 365 341 402 042 241 284	0.0 0.0 0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5 72.5 71.6	242 362 482 602 720 952 1168	
	240 min Summa 360 min Summa 480 min Summa 600 min Summa 720 min Summa 960 min Summa 2160 min Summa 2880 min Summa	er 20. er 15. er 12. er 10. er 9. er 7. er 5. er 3. er 3. er 2.	877 365 341 402 042 241 284 848 068 226	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5 72.5 71.6 91.8 97.6 105.8	242 362 482 602 720 952 1168 1556 1956 2724	
	240 min Summa 360 min Summa 480 min Summa 600 min Summa 720 min Summa 960 min Summa 2160 min Summa 2880 min Summa 4320 min Summa	er 20. er 15. er 12. er 10. er 9. er 7. er 5. er 3. er 3. er 2. er 1.	877 365 341 402 241 284 848 068 226 771	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5 72.5 71.6 91.8 97.6 105.8 113.2	242 362 482 602 720 952 1168 1556 1956 2724 3512	
	240 min Summa 360 min Summa 480 min Summa 600 min Summa 720 min Summa 960 min Summa 2160 min Summa 2880 min Summa 4320 min Summa 5760 min Summa	er 20. er 15. er 12. er 10. er 9. er 7. er 5. er 3. er 3. er 2. er 1. er 1.	877 365 341 402 241 284 848 068 226 771 483	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5 72.5 71.6 91.8 97.6 105.8 113.2 118.5	242 362 482 602 720 952 1168 1556 1956 2724 3512 4248	
	240 min Summa 360 min Summa 480 min Summa 600 min Summa 720 min Summa 960 min Summa 2160 min Summa 2880 min Summa 4320 min Summa	er 20. er 15. er 12. er 10. er 9. er 7. er 3. er 3. er 2. er 1. er 1. er 1.	877 365 341 402 241 284 848 068 226 771	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5 72.5 71.6 91.8 97.6 105.8 113.2	242 362 482 602 720 952 1168 1556 1956 2724 3512	
	240 min Summa 360 min Summa 480 min Summa 600 min Summa 720 min Summa 960 min Summa 2160 min Summa 2880 min Summa 4320 min Summa 5760 min Summa 8640 min Summa	er 20. er 15. er 12. er 10. er 9. er 7. er 3. er 3. er 2. er 1. er 1. er 1. er 1.	877 365 341 402 241 284 848 068 226 771 483 284 137	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5 72.5 71.6 91.8 97.6 105.8 113.2 118.5 123.0	242 362 482 602 720 952 1168 1556 1956 2724 3512 4248 4936	
	240 min Summa 360 min Summa 480 min Summa 600 min Summa 720 min Summa 960 min Summa 2160 min Summa 2880 min Summa 4320 min Summa 5760 min Summa 8640 min Summa	er 20. er 15. er 12. er 10. er 9. er 7. er 3. er 3. er 2. er 1. er 1.	877 365 341 402 241 284 848 068 226 771 483 284 137 851	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	54.5 60.0 64.0 67.1 69.5 72.5 71.6 91.8 97.6 105.8 113.2 118.5 123.0 126.8	242 362 482 602 720 952 1168 1556 1956 2724 3512 4248 4936 5648	

Southpoint Old Brighto Gatwick RH Date 29/07/ File Pond - Ennovyze								
atwick RH ate 29/07/ 'ile Pond -		I		l Sizino	-		moto	
ate 29/07/ 'ile Pond -	II UPR						matorium	
ile Pond -				9-Munt	-		SHILL	— Micro
				gned by	-			Draina
Innovyze	Final.SRCX			ked by				Branic
			Sour	ce Con	trol	2020.	1	
	<u>Summary of Resul</u>	<u>lts fc</u>	or 10	<u>)0 year</u>	Ret	urn Pe	<u>eriod (+40%</u>)
	Storm	Max	. ,	Max M	lax	Max	Status	
	Event	Leve		epth Con				
		(m)		-	/s)	(m ³)		
	60 min Winter				0.5		Flood Risk	
	120 min Winter 180 min Winter				0.5		Flood Risk Flood Risk	
	240 min Winter				0.5 0.5		Flood Risk	
	240 min Winter 360 min Winter				0.5		Flood Risk Flood Risk	
	480 min Winter				0.5		Flood Risk	
	600 min Winter				0.5		Flood Risk	
	720 min Winter				0.5		Flood Risk	
	960 min Winter				0.5		Flood Risk	
	1440 min Winter				0.5		Flood Risk	
	2160 min Winter	163.4	11 0	.311	0.5	59.9	Flood Risk	
	2880 min Winter	163.3	91 0	.291	0.5	55.5	Flood Risk	
	4320 min Winter	163.3	41 0	.241	0.5	45.1	Flood Risk	
	5760 min Winter	163.2	94 0	.194	0.5	35.6	Flood Risk	
	7200 min Winter				0.5	27.6	Flood Risk	
	8640 min Winter 10080 min Winter				0.5 0.5		Flood Risk O K	
	Storm	Ra	ain	Flooded	Disc	charge	Time-Peak	
	Storm Event		ain 1/hr)			charge	Time-Peak (mins)	
					Vo	-		
	Event	(mm	n/hr)	Volume (m³)	Vo (olume m³)	(mins)	
	Event 60 min Wint	(mm	h/hr)	Volume (m³) 0.0	Vo (lume m ³) 41.6	(mins) 62	
	Event	(mm ter 56 ter 35	h/hr)	Volume (m³)	Vo (olume m³)	(mins)	
	Event 60 min Wint 120 min Wint	(mm ter 56 ter 35 ter 25	hr) 5.713	Volume (m ³) 0.0 0.0	Vo (blume (m ³) 41.6 51.3	(mins) 62 122	
	Event 60 min Wint 120 min Wint 180 min Wint	(mm cer 56 cer 35 cer 25 cer 20	5.713 5.004 5.973 0.877	Volume (m ³) 0.0 0.0 0.0	Vo (41.6 51.3 57.0	(mins) 62 122 180	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint	(mm cer 56 cer 35 cer 25 cer 20 cer 15	5.713 5.004 5.973 0.877	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Vo (<pre>plume m³) 41.6 51.3 57.0 60.9</pre>	(mins) 62 122 180 240	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint	(mm cer 56 cer 35 cer 25 cer 20 cer 15 cer 12 cer 10	5.713 5.004 5.973 5.365 5.341 5.402	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vo (41.6 51.3 57.0 60.9 66.8 71.0 73.8	(mins) 62 122 180 240 356 472 586	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint	(mm cer 56 cer 35 cer 25 cer 20 cer 15 cer 12 cer 10 cer 9	5.713 5.004 5.973 5.365 5.341 5.402 5.042	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vo (<pre>dume m³) 41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4</pre>	(mins) 62 122 180 240 356 472 586 700	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint	(mm cer 56 cer 35 cer 25 cer 20 cer 15 cer 12 cer 10 cer 9 cer 7	5.713 5.004 5.973 5.365 5.341 5.341 5.402 5.042 7.241	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vo (<pre>dume m³) 41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4 75.7</pre>	(mins) 62 122 180 240 356 472 586 700 922	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint 960 min Wint	(mm ter 56 ter 35 ter 25 ter 20 ter 15 ter 12 ter 10 ter 9 ter 7 ter 5	5.713 5.004 5.973 5.365 5.341 5.341 5.284	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vo (41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4 75.7 72.5	(mins) 62 122 180 240 356 472 586 700 922 1328	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint 960 min Wint 1440 min Wint	(mm cer 56 cer 35 cer 25 cer 20 cer 15 cer 12 cer 10 cer 9 cer 7 cer 5 cer 3	5.713 5.004 5.973 5.365 5.341 5.402 5.241 5.284 5.284 5.848	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vo (<pre>dume m³) 41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4 75.7 72.5 102.8</pre>	(mins) 62 122 180 240 356 472 586 700 922 1328 1664	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint 960 min Wint 1440 min Wint 2160 min Wint	(mm ter 56 ter 35 ter 25 ter 20 ter 12 ter 12 ter 10 ter 9 ter 7 ter 5 ter 3 ter 3 ter 3	5.713 5.004 5.973 5.365 5.341 5.241 5.284 5.284 5.848 5.068	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vo (<pre>dume m³) 41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4 75.7 72.5 102.8 109.2</pre>	(mins) 62 122 180 240 356 472 586 700 922 1328 1664 2132	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint 960 min Wint 1440 min Wint 2160 min Wint 4320 min Wint	(mm ter 56 ter 35 ter 25 ter 20 ter 12 ter 12 ter 10 ter 9 ter 7 ter 5 ter 3 ter 3 ter 25 ter 20 ter 12 ter 10 ter 10 ter 25 ter 25 ter 20 ter 15 ter 25 ter 20 ter 15 ter 25 ter 20 ter 15 ter 25 ter 20 ter 15 ter 10 ter 10 ter 35 ter 25 ter 20 ter 10 ter 10 ter 35 ter 25 ter 20 ter 10 ter 10 ter 35 ter 25 ter 20 ter 10 ter 35 ter 35 ter 35 ter 10 ter 35 ter 35 ter 35 ter 10 ter 35 ter 35 ter 35 ter 35 ter 10 ter 35 ter	5.713 5.004 5.973 5.365 5.341 5.402 5.042 7.241 5.284 5.284 8.068 5.226	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vo (<pre>dume m³) 41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4 75.7 72.5 102.8 109.2 118.3</pre>	(mins) 62 122 180 240 356 472 586 700 922 1328 1664 2132 2984	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint 960 min Wint 2460 min Wint 2480 min Wint 4320 min Wint 5760 min Wint	(mm ter 56 ter 35 ter 25 ter 20 ter 12 ter 12 ter 10 ter 9 ter 7 ter 5 ter 3 ter 3 ter 25 ter 20 ter 12 ter 10 ter 10 ter 25 ter 25 ter 20 ter 10 ter 25 ter 10 ter 25 ter 20 ter 10 ter 10 te	<pre>/hr) 5.713 5.004 5.973 5.365 5.341 5.284 5.284 5.284 5.284 5.26771</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	v o (<pre>dume m³) 41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4 75.7 72.5 102.8 109.2 118.3 126.8</pre>	(mins) 62 122 180 240 356 472 586 700 922 1328 1664 2132 2984 3752	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint 1440 min Wint 2160 min Wint 2880 min Wint 4320 min Wint 5760 min Wint	(mm ter 56 ter 35 ter 25 ter 20 ter 15 ter 12 ter 10 ter 9 ter 7 ter 5 ter 3 ter 3 ter 25 ter 10 ter 12 ter 10 ter 10 ter 12 ter 10 ter 1	<pre>/hr) 5.713 5.004 5.973 5.365 5.341 6.402 6.241 5.284 5.284 5.284 5.284 5.284 5.226 7.71 7.483</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vo (<pre>dume m³) 41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4 75.7 72.5 102.8 109.2 118.3 126.8 132.8</pre>	(mins) 62 122 180 240 356 472 586 700 922 1328 1664 2132 2984 3752 4472	
	Event 60 min Wint 120 min Wint 180 min Wint 240 min Wint 360 min Wint 480 min Wint 600 min Wint 720 min Wint 960 min Wint 2460 min Wint 2480 min Wint 4320 min Wint	(mm ter 56 ter 35 ter 25 ter 20 ter 15 ter 12 ter 10 ter 9 ter 7 ter 5 ter 3 ter 3 ter 3 ter 25 ter 12 ter 10 ter 10 ter 12 ter 10 ter 12 ter 10 ter 10 ter 11 ter 10 ter 11 ter 111	<pre>/hr) 5.713 5.004 5.973 5.365 5.341 5.284 5.284 5.284 5.284 5.26771</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	v o (<pre>dume m³) 41.6 51.3 57.0 60.9 66.8 71.0 73.8 75.4 75.7 72.5 102.8 109.2 118.3 126.8</pre>	(mins) 62 122 180 240 356 472 586 700 922 1328 1664 2132 2984 3752	

Unda Consulting Ltd		Page 3
Southpoint	Pond Sizing	
Old Brighton Road	Roof Runoff From Crematorium	
Gatwick RH11 OPR	89699-Muntham-TurnersHill	Micro
Date 29/07/2020	Designed by TS	Drainage
File Pond - Final.SRCX	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	

<u>Rainfall Details</u>

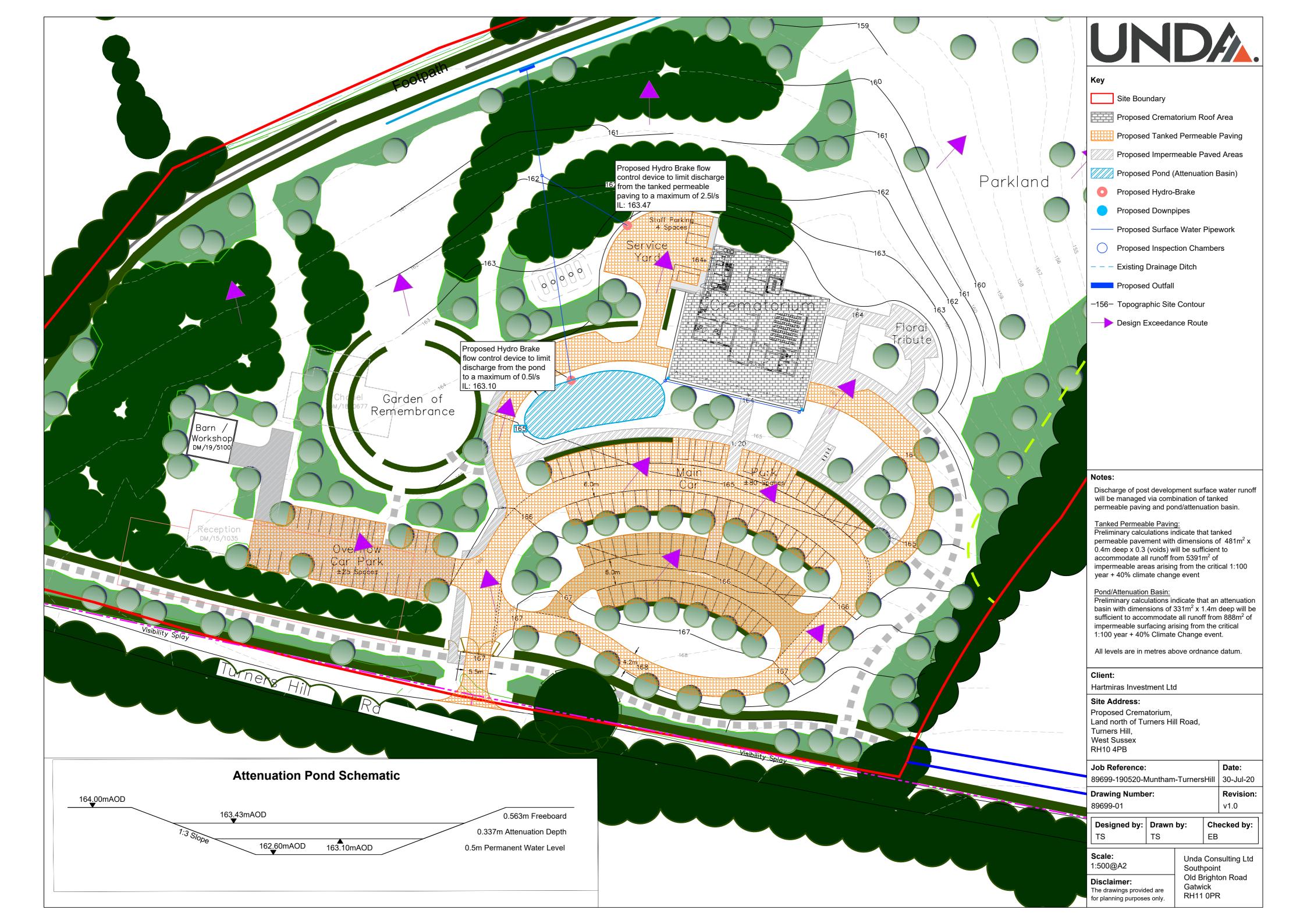
FSR	Winter Storms Yes
100	Cv (Summer) 0.750
England and Wales	Cv (Winter) 0.840
20.000	Shortest Storm (mins) 15
0.350	Longest Storm (mins) 10080
Yes	Climate Change % +40
	100 England and Wales 20.000 0.350

<u>Time Area Diagram</u>

Total Area (ha) 0.089

Time	(mins)	Area
From:	To:	(ha)

0 4 0.089


Unda Consulting Ltd				I	Page 4
Southpoint	Pond Siz	ing		[
Old Brighton Road	Roof Run	off From	Crematori	.um	
Gatwick RH11 OPR	89699-Mu	ntham-Tur	nersHill		Micco
Date 29/07/2020	Designed	by TS			Micro
File Pond - Final.SRCX	Checked				Drainage
		ontrol 20	20 1		
Innovyze	Source C	ONLIOI 20	20.1		
	Model Deta	<u>ails</u>			
Storage is On	nline Cover	Level (m)	163.500		
Tank	or Pond S	<u>tructure</u>			
Inve	ert Level (m)	163.100			
Depth (m) Area (m²) Depth (m) Ar					
0.000 170.0 0.400	230.0	0.401	242.0	0.900	331.6
<u>Hydro-Brake</u>	® Optimum	Outflow C	<u>Control</u>		
	t Reference	MD-SHE-003	9-5000-0400		
	gn Head (m)			0.400	
Design	Flow (l/s) Flush-Flo™		Calcu	0.5 ulated	
		Minimise			
	Application		-	urface	
Sum	np Available			Yes	
	ameter (mm)			39	
	t Level (m)		10	63.100	
Minimum Outlet Pipe Di Suggested Manhole Di				75 1200	
Control P	oints	Head (m) F	low (l/s)		
Design Point (0	Calculated)	0.400	0.5		
	Flush-Flo™		0.5		
	Kick-Flo®	0.269	0.4		
Mean Flow over	Head Range	-	0.4		
The hydrological calculations have Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated	Should ano nen these sto	ther type o orage routi	f control o ng calculat	device ot tions wil	her than a l be
Depth (m) Flow (1/s) Depth (m) Flo					
0.100 0.5 1.200 0.200 0.5 1.400	0.8	3.000 3.500	1.2	7.000 7.500	1.8 1.9
0.300 0.4 1.600	0.9	4.000	1.4	8.000	2.0
0.400 0.5 1.800	1.0	4.500	1.5	8.500	2.0
0.500 0.6 2.000	1.0	5.000	1.6	9.000	2.1
0.600 0.6 2.200	1.1	5.500	1.6	9.500	2.1
0.800 0.7 2.400	1.1	6.000	1.7		
1.000 0.7 2.600	1.1	6.500	1.8		

Appendix C

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, RH11 0PR. +44 (0) 1293 214 444. info@unda.co.uk

Commercial in Confidence

